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Certain features in Frenkel Kontorova and other models of phases with a one- 
dimensional modulation can be analyzed by assuming parallel interfaces 
separating sets of lattice planes belonging to two different phases, and treating 
the free energy a to create interfaces, as well as the interaction of two, three, or 
more interfaces, as phenomenological parameters. A strategy employed by 
Fisher and Szpilka for interacting defects can be extended to the case of inter- 
faces, allowing a systematic study of the phase diagram by ignoring all interface 
interactions, and then successively taking into account pair, triple, and 
higher-order terms. The possible phase diagrams which can occur near the point 
where cr = 0 include: various sorts of endpoints analogous to critical endpoints, 
an accumulation point of first-order transitions and triple points, and a 
self-similar structure which we call an upsilon point, which turns out to be an 
accumulation point of an infinite number of segments of first-order transition 
lines, each of which terminates in two upsilon points. 

KEY WORDS: Modulated phases; interfaces; interface interactions; Frenkel- 
Kontorova models; commensurate-incommensurate transitions. 

1. I N T R O D U C T I O N  

A n u m b e r  o f  t h e o r e t i c a l  m o d e l s  h a v e  b e e n  d e v e l o p e d  in  a n  a t t e m p t  to  

u n d e r s t a n d  t he  c o m p l e x  s t r u c t u r e s  a n d  p h a s e  d i a g r a m s  of  s y s t e m s  w h i c h  

h a v e  a m o d u l a t e d  s t r u c t u r e  s u p e r i m p o s e d  o n  a c ry s t a l l i ne  la t t ice .  (1~4) 

A m o n g  these  a re  t he  m i c r o s c o p i c  A N N N I  a n d  c h i r a l  c lock  m o d e l s ,  (5'6) 

p h e n o m e n o l o g i c a l  m o d e l s  b a s e d  o n  a L a n d a u  e x p a n s i o n ,  (7'8) a n d  F r e n k e l -  
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Kontorova models. (9 ~2) Certain features in the phase diagrams of the latter 
can be conveniently analyzed in terms of a picture of interacting interfaces, 
which is the subject of this paper. 

The Frenkel-Kontorova model, which consists of a set of (classical) 
atoms in a one-dimensional periodic potential connected with springs, can 
be regarded as a crude atomic model of a modulated phase or, with some- 
what better justification, as a phenomenological model of a three-dimen- 
sional system of planes of atoms in which the free energy depends on the 
average value of an order parameter in each plane. A number of studies, 
mainly by Aubry and his collaborators, (9-11) have shown that the ground 
states of a Frenkel-Kontorova model (which correspond to the minimum 
free energy, or equilibrium state of the corresponding three-dimensional 
system) can exhibit an infinite set of periodic and quasiperiodic phases with 
a complicated but continuous series of commensurate-incommensurate 
transitions as a suitable parameter is varied. A useful way of thinking about 
these transitions is in terms of a set of interacting defects ("discommensura- 
tions," "kinks," or "solitons") whose creation energy is a function of the 
thermodynamic parameters in the system. 

Numerical studies (13'14) have shown that the addition of suitable har- 
monics (even with an extremely small amplitude) to the cosine potential of 
the standard Frenkel-Kontorova model can give rise to first-order trans- 
itions terminating in a complicated sort of "multicritical" point where the 
surface tension a between the coexisting phases goes to zero. In the phase 
diagram one finds a fan-shaped structure consisting of a complicated 
mixture of different phase transitions emerging on the side of this multi- 
critical point where o- is negative, opposite the first-order phase transition. 
Because the sides of the fan come together at a cusp which is tangential 
to the first-order transition, resembling the Greek letter r ,  we shall refer 
to this multicritical point as an upsilon point. Upsilon points also occur 
in certain Frenkel-Kontorova models with a nonconvex interaction 
("spring") potential between atoms (15) and in an exactly soluble model of 
Aubry et aL (16) 

In this paper we shall show that upsilon points can be discussed in 
terms of interacting interfaces in much the same way that commensurate- 
incommensurate transitions can be discussed in terms of interacting defects. 
If an upsilon point occurs at the end of a first-order transition separating 
phases e and fl, then the modulated structures of interest consist of 
a certain number of planes of phase c~, followed by planes of phase fl, 
followed by more planes of e, and so forth, with interfaces occurring at 
each transition from one phase to the other. The equilibrium (minimum 
free energy) states of such a system can be worked out using a set of 
phenomenological parameters: the free energies of phases ~ and fl, the free 
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energy a to create an interface, which may be positive or negative, and the 
energies of interactions of two or more interfaces, which may be of either 
sign. Depending on the signs of these interactions, an upsilon point or 
some other structure will arise at the end of the first-order transition line. 

The strategy we use in studying the phase diagram involves an exten- 
sion of the method of Fisher and Szpilka, ~xv) which they used for studying 
interacting defects, to the case of interacting interfaces. Thus, following Sec- 
tion 2, which introduces the notation for the interacting interfaces model, 
we consider in Section 3 the phase diagram when all the interactions 
among interfaces have been turned off. The pair interactions are turned 
back on in Section 4, and the three-interface interactions in Section 5. At 
each stage we find a phase diagram containing first-order lines and super- 
degenerate lines or points, and we assume that the former will be left 
qualitatively unchanged, while the latter will be further split or transformed 
into first-order transitions by the remaining higher-order interactions, 
which are always assumed to be small relative to those already considered. 
The effects of four-interface and higher-order interactions upon the phase 
diagrams obtained in Section 5 are discussed using a "renormalization" 
approach applied to certain superdegenerate lines in Section 6 and to 
a class of superdegenerate points in Section 7. Then the effects of all 
remaining interactions can, at least in favorable cases, be determined by 
iterative procedures. The process is carried out in some detail in Section 8 
using the "exponential interactions" which Sasaki has shown (18) are to be 
expected under fairly general conditions in the case of the interfaces arising 
in Frenkel-Kontorova models, provided they are widely separated. The 
upsilon point turns out to be self-similar in the sense that an infinite num- 
ber of short segments of first-order lines occurs in its neighborhood, and 
each of these segments terminates in two upsilon points. Our conclusions 
are summarized in Section 9. 

2. INTERFACES A N D  THEIR INTERACTIONS 

We suppose that the system of interest to us consists of a number of 
parallel planes of atoms (spins, or whatever), and that each plane belongs 
to one of two phases, ~ and /~, or lies near an interface between these 
phases. Phase ~ is assumed to be periodic with period Q~>~ 1; that is, 
planes n and n + Q~ (if not near an interface) are identical in terms of their 
average thermal properties, whereas planes n and n + 1 are different, unless 
Q~ = 1. Similarly, we assume that phase fl is periodic with period Q~ ~> 1. 

As for planes lying near an interface, we assume that some convention 
has been adopted, applicable to all interfaces of this type, whereby the 
center of the interface is assigned a position midway between two planes. 

822/62/1-2-4 
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Then all planes lying on the :~ side of this interface, in a region extending 
to the next interface, are, by convention, assigned to phase e, and those on 
the fl side to phase ft. Consequently, the system can be thought of as con- 
taining l 1 planes of phase c~, followed by ml planes of phase fl, followed by 
12 planes of phase ~, and so forth, with the total number N of planes in the 
system equal to the sum of the l's and the m's. We assume that the free 
energy H of the system as a whole is some function of the configuration 
{li, mi} of I's and m's, the set of numbers giving the number of planes 
separating adjacent interfaces. 

In addition, we assume that the number of planes l associated with a 
segment of phase ~ lying between adjacent interfaces is not arbitrary, but 
can only take on the values 

l = l *  + pQ~, (2.1) 

where l* is a fixed positive number giving the minimum value of the length 
of such a segment, and p/> 0 is any nonnegative integer. Similarly, the 
number of planes m in a segment of fl can only take the values 

m = m* + qQ~ (2.2) 

with m * >  0 fixed, and q/> 0 arbitrary. 
While the restrictions (2.1) and (2.2) may at first seem surprising, they 

are not unreasonable. To begin with, we are not totally excluding other 
possibilities, but only assuming that their free energies are significantly 
higher, and hence they can be ignored when studying the equilibrium state, 
the state of minimal free energy. Next, given two phases c~ and fl, there may 
well be a number of possible interfaces between them, but one of these is 
likely to have a lower free energy than the others, and for simplicity we 
assume that only this type occurs in the equilibrium state. (We allow for 
the possibility that the ~-followed-by-fi or c~-fl interface is distinct from the 
fl-c~ interface, so as to allow for phases which lack a mirror symmetry, but 
we assume that just one interface of each type occurs.) Now if phase c~ has 
a period Q~ > 1, it is plausible that the position of the minimum-free-energy 
fl-c~ interface relative to a plane of a particular type in phase c~ should be 
a definite number modulo Q,. Considerations of this sort suggest (2.1) and 
(2.2); they may also, of course, simply be regarded as part of the definitions 
of our model. 

The foregoing terminology is easily adapted to a Frenkel-Kontorova 
model of a one-dimensional array of atoms in a periodic potential. One 
speaks of individual atoms, not planes, assigned to phases ~ and fl, with li 
and mi the numbers of atoms in the corresponding segments of c~ and ft. If 
xn is the position of the nth atom and the periodic potential has a period 
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a, then a periodic phase of period Q > 0 is one for which there is an integer 
P such that 

x,,+ Q = x,, + Pa (2.3) 

for all n, and Q is the smallest positive integer for which this relation holds. 
Naturally, it is this Q which enters (2.1) or (2.2), as the case may be. In the 
Frenkel-Kontorova case, H is the energy, and we are interested in the 
minimum energy or ground state. Consequently, in what follows we shall 
sometimes use "ground state" to refer to the equilibrium state of minimum 
free energy. 

Although both c~ and /~ are assumed to be periodic, the actual con- 
figuration (of planes or atoms) may be periodic or not, depending on the 
set of integers {li, mi}. The following is a convenient notation for periodic 
configurations. Let [ lm]  denote the configuration in which l ~ = l  and 
ms= m for all i, [ l m l ' m ' ]  that in which l~= l and mi=  m for i even, and 
li = l', ml = m' for i odd, and so forth: the letters between brackets denote 
a segment whose repetition generates the entire configuration. 

Free energies are assigned to configurations {l~, m~} in the following 
way. Let e~ and ea be the free energy per plane (energy per atom in a 
Frenkel-Kontorova model) in the pure phases c( and/3, respectively, when 
no interfaces are present. Next consider the situation in Fig. 1, where (a) 
and (b) are schematic representations of two systems containing an equal 
number of planes, with m planes of phase e in (a) changed to phase/3 in 
(b). The difference in free energies is then 

A H  = H (b) - H (a) = (e~ - e~)m + 2a + ~b~(m) (2.4) 

where 2a is the free energy required to create two interfaces, and Ca(m) is 
the interaction free energy of these interfaces when separated by m planes. 
We require that ~b/~(m) go to zero as m becomes large, always assuming 

(a) 
(/ 

(b) 

(c) 

m 

a ,8 a 

ml 12 m2 

a B a B a 

Fig. i. Diagram showing how interface creation and interaction free energies can be 
computed by inserting segments of one phase into another. 
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that m is very small compared to the total number of planes, and hence a 
may be defined by a limiting process: 

2 a =  lim [ A H -  (e~-e~)m] (2.5) 
m ~ o o  

Consequently, one can regard (2.4) as defining ~b~(m), for a fixed m, as A H  
minus the first two terms on the right-hand side. 

A similar procedure can be used to define ~b~(l), the interaction of 
two interfaces separated by l planes of phase e, and also three-interface 
and four-interface interactions, etc. Thus, for example, Fig. lc shows a 
configuration whose free energy relative to that of Fig. la is given by 

A H =  (e~ - e~)(ml + m2) -}- 4a + ~/~(ml) -t- q~(12) 

+ ~be(m2) + ~bt~(ml, 12) + ~b~(12, m2) + q~(ml, 12, m2) (2.6) 

In this expression a ~b~ or ~b~ with n arguments represents the interaction of 
n + 1 interfaces. The subscript denotes the phase corresponding to the first 
argument. Note that the only two-interface terms in (2.6) correspond to 
adjacent interfaces; an interaction between the first and third interfaces in 
Fig. lc can be incorporated in the three-interface term ~br 1 , 12). A similar 
comment applies to higher-order interactions: the interfaces involved are 
always consecutive. We always assume that ~b~ or ~b~ goes to zero as any 
one of its arguments goes to infinity. This makes it possible to define 
various n-interface interactions by means of appropriate limiting processes 
and subtractions, as in (2.5) and the remarks which follow. 

An equivalent approach to defining or calculating interface interaction 
energies makes use of reconnection formulas, (19) as in Fig. 2. The configura- 
tions (a) and (b) are obtained by "reconnecting" (c) and (d) in the following 

Ca) 

(b) 

Cc) 

Cd) 

I t 

a a 

(~ 

B 

! 

I 

Fig. 2. Diagram illustrating the calculation of interface pair interactions by means of a 
reconnection formula, Eq. (2.7). 
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sense. If (c) and (d) are "broken" at the position of the interface in (d), and 
the planes following this interface in (c) are interchanged with the corre- 
sponding planes in (d), the result is that (c) is transformed into (a) and (d) 
into (b). What makes this procedure useful is the formula 

r = H ~a) + H (b) - H ~c) - H (d) (2.7) 

which expresses the interface interaction free energy in terms of the free 
energies of the four configurations shown in the figure; that is, in terms of 
the work required to accomplish the reconnection. 

Note that the configurations (c) and (d) in Fig. 2 do not have to have 
the same number of planes, and might have various type of boundary con- 
dition at either end. Formula (2.7) remains valid provided configurations 
(a) and (b), and their boundary conditions, are consistent with their 
having been obtained by reconnecting (c) and (d). (Of course, the 
boundaries must be far enough away so that they have a negligible inter- 
action with the interfaces shown in the figure.) 

The same reconnection procedure works for multiple interface inter- 
actions. Thus one has 

q~(/1 ,  m l ,  12, m2)  = H(a) + H(b) -- H (c) - -  H (a) (2.8) 

for the configurations of Fig. 3. In the general case, configuration (a) 
contains precisely those interfaces whose interaction one wishes to evaluate. 
Then (d), (c), and (b) are obtained by eliminating the leftmost, the 
rightmost, and both extreme interfaces, respectively, from (a), in a manner 
which leaves the planes between the extreme interfaces in (a) unaltered. 

In light of the preceding discussion, we shall assume that the free 
energy of a general configuration {li, mi} is of the form 

v 

H =  ~ (2a + l ie~  + m i e n )  + ob (2.9) 
i = l  

l t ml 12 rna 
( a )  , , , , I ~  

/~ a B a /3 a 

Cb) , , 

( C )  ~ ]  i , 

( d )  , J i i 

Fig. 3. Diagram illustrating the calculation of a five-interface interaction by means of a 
reconnection formula, Eq. (2.8). 
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where 

i = 1  

+ ~(m, , / ,+~)  + ~(/~, m, , / ,+~)+  �9 "'2 (2.10) 

is the sum of the interactions of the 2v interfaces. The total number of 
planes is given by 

v 

N= F~ (l,+m,t (2.11) 
i - - 1  

The subscript c~ or /3 on a ~b denotes the phase corresponding to the 
first argument, and is hence redundant if the argument itself indicates 
which phase is involved. Since we shall always use rs for phase ~ and m's 
for phase/3, the subscript will sometimes be dropped, and also the commas 
separating arguments. Thus, for example, ~(mlm[) denotes ~b~(m, l, m, [). 

Equations (2.9)-(2.11), along with the conditions (2.1) and (2.2), 
constitute the definition of the interface model whose phase diagram will be 
studied in the remainder of this paper by minimizing the free energy per 
plane, 

f = H/U (2.12) 

as a function of various parameters in H. Since adding a constant to both 
e~ and e~ does not influence the relative free energies of different phases, it 
is convenient to use the parameter 

e = % - e ~  (2.13) 

in constructing phase diagrams, in place of the two parameters e~ and e~. 
We shall be interested in phase diagrams in the o-, e plane in the 

vicinity of the origin where o- and e vanish. In applications of the interface 
model, a and e can be regarded as smooth functions of thermodynamic 
field variables (such as temperature, pressure, chemical potentials), or of 
the parameters (temperature, exchange constants, etc.) of a microscopic or 
phenomenological model. The same is true of the various ~b's. 

Rather than minimizing H/N, it is sometimes more convenient to 
minimize 

~ = H - f N =  2~rv + ~o (2.14) 

with f and v held fixed, and N allowed to vary. Equivalently, one may 
minimize 

. ~ o = ~  (l,t/~, + md/~) + q~ (2.15) 
i 
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with 

q = = e ~ - f ,  q # = e # - f  (2.16) 

and v held fixed. As shown in Appendix A, the (unique) value of f for 
which ~ = 0  is the desired min imum of (2.12), and consequently,  for 
this f ,  

- 2a = min(~o)/V (2.17) 

One can think of ~0 as a "lattice Hami l ton ian"  for "spin variables" li 
and mi defined on a one-dimensional  lattice of unit cells indexed by i, with 
two sites per unit cell. F r o m  this perspective, l,r/~ +~b~(l~) is a single-site 
energy, ~b~(li, m~) a nearest -neighbor  interaction, etc. 

3. A P P R O X I M A T I O N  OF N O N I N T E R A C T I N G  INTERFACES 

Our  analysis of the model  introduced in Section 2 begins with the 
approx imat ion  of noninteract ing interfaces: �9 is set equal to zero in (2.9). 
To  be specific, consider a case in which l* = 3, Q~ = 2, m* = 2, and Q# = 3. 
Then  any configurat ion consistent with (2.1) and (2.2) corresponds  to a 
walk on the energy graph shown in Fig. 4a, following the directed edges in 
the direction of the arrows, with successive vertices representing planes of 
type ~ or /~. The total  free energy (2.9) is a sum of weights e~ and 5# 
associated with the ~ and/~ vertices, and a for each of the horizontal  edges, 
corresponding to the c~-/~ and /~-~  interfaces. 

/) 

(o) 

o o  

[] 

Cb) Cc) 

O-~ -~KN~ 

( d )  Ce)  ( f )  

Fig. 4. (a) Energy graph and (b)-(c) various ground state graphs, for l* = 3, q, = 2, m* = 2, 
Q# = 3. In (f) the dashed edges are those needed when inserting a segment of c~ into/~ or vice 
versa. 
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Any periodic configuration is associated with a cycle on this graph, 
and its free energy per plane is the cyclic average: the total weight for the 
cycle divided by its length. The minimum cyclic average is the equilibrium 
or "ground state" free energy, and we call the corresponding cycle 
(which need not be unique) a periodic ground state. There is always some 
minimizing cycle for any choice of the parameters in H. 

The ground state graph is defined as that subgraph of the energy graph 
which contains all edges belonging to a periodic ground state. Several 
possibilities are shown in Fig. 4. In Fig. 4b there is a simple cycle of length 
two corresponding to phase ~, while in Fig. 4c the ground state is 
degenerate: ~ and fl have the same free energy per plane. In such a case, 
when the cycles are disjoint with no common vertices, we shall say that 
these phases coexist at a first-order transition. By contrast, the connected 
graph in Fig. 4d is a superdegenerate ground state because any walk on this 
graph yields the same free energy per .plane, and the number of possible 
distinct walks of a given length increases exponentially with the length 
(corresponding to a finite entropy), due to the fact that at the lowest 
vertex there are two possibilities for the next step. Another superdegenerate 
ground state is shown in Fig. 4e. 

The distinction between first-order and superdegenerate is very impor- 
tant for our analysis of phase diagrams. Arbitrarily weak perturbations due 
to terms which have been omitted from the analysis can split a super- 
degenerate point or line on the phase diagram in such a way as to reveal 
several distinct configurations (possibly an infinite number), each stable 
for an appropriate choice of the relevant parameters. By contrast, at a 
first-order coexistence, additional perturbations, if they are sufficiently 
weak, can create no new stable phases, and thus their effect will be to 
produce small quantitative changes in the phase diagram--shifts in the 
positions of points or lines--rather than qualitatively new features. 

It is typical of first-order coexistence that it costs a finite amount of 
free energy to insert a segment of one phase into another (as in Fig. lb), 
corresponding to a positive surface tension. This is evident in the case of 
e:fl coexistence in Fig. 4c, because such an insertion corresponds to a walk 
making use of edges--shown dashed in Fig. 4f--which are not part of any 
ground state. In this instance one can compute the additional free energy 
and show that it is 2a, as expected. By contrast, if the ground state graph 
is connected, as in the superdegenerate cases of Figs. 4d and 4e, there is 
obviously no additional free energy cost to insert a segment of one phase 
in the other, so the surface tension is zero. 

Whatever the values of l*, Q~, rn*, and Q~, the energy graph always 
contains three simple (no repetition of vertices) cycles corresponding to 
phases e, fl, and [l*m*]. A comparison of their free energies yields the 
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[l"m*] 

Y 

E 

2 0 -  

Fig. 5. Phase diagram in the a, e plane for noninteracting interfaces. The slopes of the solid 
lines depend on l* and m*. 

phase d iagram of Fig. 5 in the or, e plane (e = e~ -e~) .  The dashed line at 
e = 0, a > 0 represents the first-order coexistence of e and /3, whereas the 
solid lines 

= 2a/m* (3.1) 

e = -2a / l *  (3.2) 

for o r < 0  are superdegenerate  lines, corresponding to Figs. 4d and 4e, 
separat ing the mixed-phase region (occupied by El*m*]  in this approx ima-  
tion) f rom phases e and /3, respectively. We shall next study how these 
superdegenerate  lines are modified by interface interactions. 

4. P A I R  I N T E R A C T I O N  A P P R O X I M A T I O N  

In the pair  approx imat ion ,  the terms ~b~(l) and ~b~(m) involving inter- 
actions of pairs of interfaces are retained in (2.10), but all the ~b's with two 
or more  arguments ,  corresponding to the interaction of three or more  
interfaces, are set equal to zero. As a consequence,  (2.9) can be writ ten in 
the form 

where 

H = ~, (li + mi) f ( l , ,  m,) (4.1) 
1 

f ( l , m ) =  [ 2 a + e ~ l + e p m + O ~ , ( l ) + ~ ( m ) ] / ( l + m )  (4.2) 
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is the free energy per plane for the periodic phase [lm]. I f f  has a unique 
minimum at l = / ,  m = rh, the inequality 

H / N - f ( ~  rh)= N -1 ~ (l,+mi)[f(li,  m , ) - f ( ~  rh)] ~> 0 (4.3) 
i 

tells us that [/rh] is the unique equilibrium or ground state, since any other 
configuration will have a higher free energy per plane. On the other hand, 
if f achieves its minimum at two (or more) choices of (l, m), the equi- 
librium state is superdegenerate, since each (li, mi) can take on either of 
these two values. 

A geometrical construction of the type considered by Fisher and 
Szpilka (17) is useful for visualizing the process of finding the minimum of 
f(l, m). Construct graphs of q~(1) and ~bp(m), Figs. 6a and 6b, consisting of 
discrete points at the values of l and m allowed by (2.1) and (2.2). If 
through the points (l, ~b~(l)) and (m, ~b~(m)) straight lines are drawn with 
slopes -r/~ and -r/~, respectively, their intersections with the vertical axes 
occur at 

s~ = O~(l) + lq~, s~ = ~(m)  + mq~ (4.4) 

Upon making the identifications [consistent with (2.16)] 

a~=tl~+ f,  e~=q~ + f  (4.5) 

and 

= -�89 + s~) (4.6) 

we recover (4.2). 

+o' 

[ I > m  
" , , . . .  * ,, 

(a) (b) 

Fig. 6. Graphs of (a) ~b~(l), (b) ~b~(m) showing lower tangent lines and their intersections 
with the ~b axes. 
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We shall call one of these straight lines a lower tangent line if it lies 
below, or passes through, every other point on the graph. The examples in 
Fig. 6 have this character. It is obvious that for a given ~/~, s~ in (4.4) takes 
on its minimum value when the straight line is a lower tangent line; and 
similarly s~ for a given r/~. Consequently, in view of (4.6), ~r is maximized 
for a specified f and e (and thus a specified q~ and r/~) by that l and that 
m through which the corresponding lower tangent lines pass. (Of course, 
the l and m may not be unique, as, for example, in Fig. 6a.) It is also the 
case that for this e and a, the same l and m minimize f in (4.2). For 
suppose there were some other values l', m' yielding as 

f ,  = 2a + l'e~ + m'e~ + fk~(l') + O~(m') (4.7) 
l '  + m' 

strictly less than f .  We could then increase ~r in (4.7) until f '  was equal to 
our previous f (note that l ' +  m' is positive). This would be a contradic- 
tion, as the new value of ~r would exceed the previous value, which was, by 
hypothesis, a maximum. 

As a first application of the geometrical construction, note that if, say, 
~b/~(m) has a unique negative minimum at m = m ~ as in Fig. 6b, the fact 
that ~b;(m) tends to zero as m becomes infinite implies that no m > m ~ can 
ever appear in an equilibrium or ground state, as it is impossible to pass 
a lower tangent line through (m, ~b;(m)). Analogous remarks apply to ~b~. 
By contrast, if ~b~ and ~b; satisfy the convexity conditions 

A 2~b~(l) = ~b~(l + Q~) + ~b~(l- Q~) - 2~b~(l) > 0 (4.8) 

A 2 0 ~ ( m ) = ~ ( m + Q ~ ) + ~ ( m - Q ~ ) - 2 q } ~ ( m ) > O  (4.9) 

for all l >  l* and m > m*, respectively, then every l and m allowed by (2.1) 
and (2.2) will appear in the phase diagram. 

Although it is not essential to our analysis, a convenient assumption, 
which will simplify the exposition below, is that ~b~ and ~b/~ are initially 
convex in the following sense: Either ~b~ is everywhere positive and (4.8) 
holds for all allowed l > l*, or else it has a unique negative minimum at 
l = l  ~ and (4.8) holds for l * < I < I  ~ Similarly, for ~bp, (4.9) holds for all 
allowed m in the range m* < m < m ~ where m ~ is either the unique negative 
minimum of ~bt~, or + oe in the case in which ~ba is everywhere positive. 
Assuming initial convexity, it is helpful to distinguish three cases: 

A. qt~ and ~b~ everywhere positive. 

B. Either ~b~ and ~be has a negative minimum, and the other is 
everywhere positive. 

C. Both ~b~ and q~/~ have negative minima. 
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Given that  ~b~ is initially convex, a lower tangent line either passes 
through a single point of the graph, in which case its slope can be varied 
within certain limits, or it passes through two successive points, say ! and 

in which case its slope is - t l~  with 

(4.10) 

and its intercept with the vertical axis is 

s~ = ~(/ )  +/,I~ = ~( [ )  + [~ (4.11a) 

or 
s~ = [/~b~(/) - l~([) ]/([- /) (4.1 lb)  

The corresponding formulas for ~b~ are 

or 

q~ = [~b~(m) - ~b~(rh) ] / ( rh  - m )  

sr = ~b~(m) + mt/p = q~p(rh) + rhqp 

(4.12) 

(4.13a) 

s~ = [r~b~(m) - m~br ]/(rh -- m) (4.13b) 

The discussion following (4.3) shows that  either (4.10) or (4.12) gives 
rise to a superdegenerate ground state. Consequently,  the positive quadrant  
of the q~, r/~ plane (note that tl~ and q~ cannot  be negative, for a lower 
tangent line cannot  have a positive slope) is divided into a set of rectangles, 
as shown in Fig. 7, by superdegenerate lines. In each rectangle there is a 

0 

0 
12 I 0 

0 

l ' 
2 

0 

0 

2 I 2 
__L . . . . . . . . . . .  

(a) 'r/~ (b) (c) 

Fig. 7. Phase diagram in the positive q~, q~ quadrant for (a) case A, (b) case B, (c) case C. 
The numbers at the top of each figure give the value of p, and those at the right side the 
values of q (see rext). 



single simple mixed phase I/m], where l is given by (2.1) using the p value 
indicated above the rectangle at the top of the figure, and m by (2.2) using 
the q value indicated to the right of the rectangle. Cases A, B, and C 
correspond to 7a, 7b, and 7c: an infinite number of superdegenerate lines 
parallel to both axes, an infinite number parallel to one and a finite 
number parallel to the other, or only a finite number of superdegenerate 
lines parallel to both axes. The heavy lines indicate the axes which are 
accumulations of superdegenerate lines. 

The various features in the positive r/a, r/B quadrant can be mapped 
into the a, e plane by inserting (4.10)-(4.13) in (4.5) and (4.6), and using 
(2.13): 

e = e~ - e~ = r/~ - t/~ (4.14) 

The result is a set of parallelograms, as in Fig. 8, formed by straight lines 
connecting the four phase points, located at 

l { lO~( {)_l_-- [O~( l) + mr ~(rh ) - ffq~b p(m ) ; 
a=~ -1  rh-m ) (4.15) 

- ! - ~  O" 

(q~([)-O~([)) ( r  ~ ( ~ ) )  (4.16) 
7-7 / -  - 

where the phases [lm], [/rh], [[m], and [/rh] come together. 
The phase diagram for case A (~b~ and r both positive), shown in 

Fig. 8, can be analyzed in the following way. The geometrical construction 
implies that s~ and s~ are positive, so a must be negative whenever mixed 
phases are present. Thus, for a > 0 the only possible phases are e and fl; the 

Interface Interactions in Modulated Phases 59 

Fig. 8. Phase diagram for case A in the a, ~ plane. 
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former minimizes f for e < 0 and the latter for e > 0. Thus, at e = O there is 
a first-order phase boundary with a positive interface-creation free energy, 
as noted above in Section 3. 

The convexity conditions (4.8) and (4.9) along with the positivity of qi~ 
and ~b~ imply that all simple mixed phases [lm] with l and m given by (2.1) 
and (2.2) actually occur in the phase diagram. The general appearance of 
the mixed-phase region is that shown in Fig. 8: a wedge with piecewise 
linear boundaries separating it from phases e and ft. (Note that this and 
subsequent figures have been constructed using specific choices for ~b~ and 
~b~; however, the topological structure will be the same for any other 
convex choice.) 

To locate the boundary between phase c~ and the mixed-phase region, 
let m be fixed and take the limit as l becomes infinite in the geometrical 
construction. Then both r/~ and s~ tend to zero, so that r / f l = - e  and 
s~ = - 2 a  from (4.14) and (4.6). Consequently, from (4.4), 

2a + c, bB(m)- me = 0 (4.17) 

where m is that value which for a given e (=  -q~)  minimizes ~bfi(m)-me 
(=s~). Since m changes in discrete steps as e varies, the boundary consists 
of a set of straight-line segments. The point at which the segment 
associated with m intersects that associated with n~ = m + Q~ is obtained by 
letting l a n d / t e n d  to infinity in (4.15) and (4.16): 

a = [mqlt~(rh ) - rh~b~(m)]/2(rh - m) 
(4.18) 

e = - [~bp(m) - ~bp(rh) ]/(rh - m) 

The slope of these segments, de/da, tends to zero as m tends to infinity and 
increases to zero. 

Precisely the same analysis, with l held fixed and m tending to infinity, 
yields the formula 

2a + ~b~(l) + ~l = 0 (4.19) 

for the boundary between phase fl and the mixed-phase region, with l in 
(4.19) the value which minimizes O~(l)+el for a given e. The boundary 
consists of straight-line segments, with the l and [=  l +  Q~ segments inter- 
secting at 

a = [/~b~([) - [0~(l)]/2([- l) 
(4.20) 

= [ ~ ( / )  - r l) 

Once again, the slope de/da of these segments tends to zero as l becomes 
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infinite and e goes to zero. Consequently, the mixed-phase region has a 
cusp at the origin of the a, e plane. 

The boundary between c~ (or fl) and the mixed phase is also the limit 
of stability of this phase against the creation of a defect. The defect of 
interest is that shown in Fig. lb in which a segment of phase fl of length 
m is inserted into phase c~ at a cost in free energy given by (2.4), which is 
just the left side of (4.17). The free energy of the defect depends, of course, 
on m, and the limit of stability is determined by that m which minimizes 
the defect energy, i.e., precisely by (4.17). At all larger values of ~r the phase 
c~ is stable against formation of these defects. Of course the same argument 
applies to phase fl when e is positive: the left side of (4.18) is the free energy 
required to create a defect consisting of a segment of phase ~ of length l 
inserted into phase ft. 

A typical phase diagram for case B, in the situation where ~b~ is 
positive and ~ has a unique minimum at m = m  ~ (Fig. 6), is shown in 
Fig. 9. Inside the mixed phase region, Eqs. (4.10)-(4.16) apply just as in 
case A; the only difference is that m and rh are always less than or equal 
t o  m ~ 

The boundary between c~ and the mixed phase region is described by 
(4.17), but with m ~<m ~ so there are only a finite number of segments. The 
last segment, with m - - m  ~ meets the first-order c~-fl transition at e = 0 and 
a = o h ,  with 

a b = -~b~(m ~ (4.21) 

The boundary between fl and the mixed phase region corresponds to 
a lower tangent line of zero slope through the minimum of ~bp, and thus to 

i 

(l 

O- 

Fig. 9. Phase diagram for case B in the a, e plane. 
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r//~ = 0,  s/3 = - - 2 o  b. As a consequence, e; = f and ~/~ = e, so that on this 
boundary 

2(a - orb) + ~b~(l) + el = 0 (4.22) 

where, once again, l is the value which minimizes ~b~(1)+ el for a given e. 
A comparison with (4.19) shows that the functional form of the boundary 
is the same as in case A, but shifted toward larger cr by an amount o- b. 
Hence the point where /~, [lm~ and [[m ~ come together is given by 
(4.20) if a b is added to the right side of the first equation. As l becomes 
infinite, the points accumulate at e = 0, a = a b. 

The c~-to-mixed boundary is an accumulation of superdegenerate lines, 
as in case A, while the/~-to-mixed boundary is first order, as can be seen 
from the following argument. The cost in free energy of inserting into phase 
/? a segment of [lm ~ ] consisting of n pieces, each of length l, of phase 
separated by (n - 1) pieces, each of length m~ of phase/~ is 

AH=2ncr+n[O~(l)+le]+(n-1)(J~(m~ (4.23) 

where we have used (4.21) and (4.22). Consequently), the surface tension 
between fl and [lm ~ is ab, independent of l (in the pair approximation). 
The first-order character also follows from the fact that the boundary 
occurs at a value of a, (4.22), at which the energy to create a defect, the 
left side of (4.19), is always positive. Hence, at this boundary fl is stable 
against the formation of defects. 

The other possibility for case B, in which ~b~ is always positive and ~b~ 
has a negative minimum at l~ can be analyzed in the same way. The phase 
diagram is the reflection of Fig. 9 through the a axis. The fl-to-mixed 
boundary is given by (4.19) with l~< l ~ and the e-to-mixed boundary by 

2(a - c%) + ~b/~(m) - me = 0 (4.24) 

with m the value minimizing q~p(m)- ms for a given e, and 

~ra = -~b=(l~ (4.25) 

The coordinates of the three-phase point where ct, [l~ and [/~ meet 
are given by (4.18) if aa is added to the right side of the first equation. And 
the surface tension between c~ and [/~ m] is aa, independent of m. Finally, 
the left end of the first-order line between ct and fl is at e = 0, a = aa. 

Case C, in which ~b~ and ~b~ have negative minimum at l ~ and 
rn ~ respectively, presents no surprise in view of the foregoing analysis. 
The phase diagram, Fig. 10, has first-order e-to-mixed and fl-to-mixed 
boundaries given by (4.24) and (4.22), respectively, along which the surface 
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/ ' >  . . . . . .  ~" O- 

Ol 

/ / / 

Fig. 10. Phase diagram for case C in the a, ~ plane. 

tension between c~ and the mixed phases is equal to aa, (4.25), and between 
/3 and the mixed phases is ab, (4.21). These boundaries meet the c~-/3 
boundary at a genuine triple point located at e = 0, a = aa + ab, where the 
three phases c~, /3, and [l~ ~ coexist. The mixed-phase region contains 
phases which l ~< l ~ and m ~< m ~ and provided l, [ and m, rh do not exceed 
these bounds, (4.10)-(4.16) apply. 

It is worth noting that in all cases the phase diagram for the mixed 
phase region in the a, e plane is the image under (4.6) and (4.14) of the 
corresponding diagram in the positive r/s, r/~ quadrant, and the remaining 
first-order line separating c~ and/3 extends to the right along the a axis from 
the image of t/~ = 0, t/~ = 0. 

5. EFFECTS OF THREE-INTERFACE INTERACTIONS 

We now consider modifications of the phase diagrams of Section 4 
produced by the three-interface terms r m) and ~b~(m, I) in (2.10), 
assuming that all ~b's with three or more arguments are zero. As mentioned 
earlier, we expect qualitative modifications only at superdegenerate lines 
and points, while first-order transitions will remain unaltered. 

In fact, the only significant changes occur near points of intersection 
(in the pair approximation) of two superdegenerate lines. Near such a 
point, Ii and mi can each take on only two possible values, which we 
denote by/ ,  [ and m, r~, with 

[=l+Q~, rh=m+Q~ (5.1) 

Thus, any configuration of interest can be represented by a string of letters, 

822/62/1-2-5 
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such as ...lm{mlr~ .... in which l and m alternate and some letters carry bars. 
Our task is to find strings which minimize the "free energy" expression 

~o = s [liq~ + miq# + O~(li) + q)#(mj 
i=1 

+ ~b~(l,, m,) + ~b#(m,, li+ 1)] (5.2) 

for a given number of letters [-i.e., for fixed v: see the discussion following 
(2.16)]. Since li and m~ can only take on two values, the problem of mini- 
mizing (5.2) is completely analogous to finding the ground state of a 
particular one-dimensional Ising model with nearest-neighbor interactions 
and two atoms in a unit cell. 

The configurations of interest can be thought of as walks on the 
energy graph shown in Fig. l la, which functions in the present context in 
the same way as Fig. 4 in Section 3. The free energy ~0 is a sum of weights 
associated with the vertices and edges in an obvious manner: e.g., 
/-r h + ~b~(/-) for the vertex/, and ~b#(~, l) for the edge directed from rh to I. 
As in Section 3, the ground state graph is the subgraph of the energy graph 
consisting of all edges which belong to some periodic ground state: a 
periodic configuration which minimizes (over all periodic configurations) 
the free energy per letter, ~o/2V, and thus corresponds to a cycle on the 
graph with the minimum possible cyclic average weight. The ground state 
graph depends, of course, on the parameters in ~o. Some possibilities are 
shown in Fig. 11, where (b)-(d) are examples of simple cycles corre- 
sponding to the nondegenerate ground state [[m], I/n]], and [lm[rh], 
while (e)-(h) are possible degenerate ground states. In (e), [[m] and [/rh] 
coexist at a first-order transition, while (f)-(h) are examples of super- 

(0) (b) Cc) (d) 

00 02 <3 
Ce) Cf) Cg) (h) 

Fig. 11. (a) Energy graph and (b)-(h)  various ground state graphs, assuming only 
configurations involving l, m, /,, and rh are permitted. 
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degenerate states (see the discussion in Section 3). It is clear from the 
graphical analysis that first-order coexistence is possible in only two cases: 
[{m] with [-/fit] and [/fit] with [lm]. Otherwise, the ground state is either 
nondegenerate or superdegenerate. Also, there are precisely six distinct 
nondegenerate ground states: four two-letter states, of which Figs. l l b  and 
1 lc are examples, and two four-letter states, Fig. 1 ld and the one with the 
arrows reversed. 

The qualitative nature of the phase diagram is determined by the signs 
of the double differences, 

A20~,(lm) = ~b~(l, m) + q~,(/, fit) - ~b~,(/, m) - ~b~,(l, fit) (5.3) 

A20~(ml)=~(m,/) + q~(fit, [)-- ~b/3(fit, l)-(J~(m, [) (5.4) 

of the three-interface interactions, as shown in the r/~, r/a plane in Fig. 12 
for the cases: (a) zlzq~>0, A2~b~>0; (b) Az~b~<0, A2~b~<0; (c) Az~b~>0, 
zJ2q~/~<0, (d) zlzq~<0, A2q~/~>0. In each case the point where the two 
superdegenerate lines cross in the two-interface approximation is split apart 
to produce either a short first-order line, (a) and (b), or a new phase with 
a larger period (four letters) surrounded by a parallelogram of super- 
degenerate lines, (c) and (d). Away from the original intersection point, the 
superdegenerate lines remain parallel to the r/~ and r/~ axes, but the upper 
and lower (or left and right) segments display a small offset. 

The phase diagrams in Fig. 12 are obtained by calculating ~o/V for 
each of the six nondegenerate ground states, and determining which of 

[ r , . ] , , ' - -  - -  

l- 
[T ]i (a) (b} 

J Cc) (d )  

Fig. 12. Modification of the phase diagram in the r/~ (horizontal), qt~ (vertical) plane 
produced by three-interface interactions near a point where two superdegenerate lines cross in 
the pair approximation, Fig. 7. The cases shown are: (a) ztZ~b~>0, zlz~b~>0; (b) ~2~<0, 
d2~/~<0; (C) Z]2~>0, ZI2~,O<0; (d) A2~c~<0, A2~,8>0, 
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these has the minimum value for a given r/~ and r/~. The lines separating 
two phases come from equating the corresponding ~o/V values. Appendix B 
gives the locations of the various three-phase points. The corresponding 
phase diagrams in the (a, e) plane can then be constructed using (4.14), 
and (2.17) in the form 

-2~r=hl~+m~l~+O~(1)+O~(m)+q)~(l,m)+~(m,l) (5.5) 

where l and m on the right side should be replaced by / /or  rh where 
appropriate. (To find ~r for the line separating [lm] and [//m], one can use 
either (5.5) as it stands or replace l by //everywhere on the right side, as 

is continuous.) Figure 13 shows the positive r/~, r/~ quadrant for a par- 
ticular choice of interactions for which AZ(~(lm) and A20~(ml) are positive 
for all l and m. The corresponding diagram in the ~r, e plane is Fig. 14. It 
is not difficult to imagine what happens in other cases: the appropriate 
motifs appearing in Fig. 12 are strung together using the structure of super- 
degenerate lines already present in the pair approximation, Figs. 7 and 8. 
Although these figures are drawn for case A, the diagrams for cases B and 
C are modified in the mixed phase region in the same way as those for 
case A. 

Where there is a first-order phase transition, as in Fig. 12a and 12b, 
the corresponding surface tension can be computed by considering the free 
energy cost of inserting a segment of one phase in the other. Consider the 
coexistence of [/rh] with [[m]. A configuration in which a segment of one 
is inserted in the other corresponds to a walk making use of some edges 
not found in the corresponding ground state graph, Fig. 1 le, and there are 

Fig. 13. 

J 
I 

I 
! 

% 
Phase diagram in the positive ~, q~ quandrant assuming A ~  and z/2~ are 

positive. 
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E 

/ ~ 

O- 

Fig. 14. Phase diagram in the ~, e plane assuming that ZJ2r and d2~6, are positive. 

four ways in which this can be done using only two extra edges, shown 
dashed in Fig. 15. A straightforward computa t ion  based on the procedures 
discussed in Section 2 yields the following expressions for the surface 
tension: 

2~o = - ( [ -  l) ~ + ~ ( l )  - ~ ( [ )  

+ r m) + ~b~(m, l) - ~b~(/, m) - r [) (5.6) 

2ab = ( [ -  l) ~/~ - r + r 

+ ~, ( f ,  m)  + r - r rh) --  ~b/~(rh, I) (5.7) 

2ac = A2r (5.8) 

2ryd= AZCB(ml) (5.9) 

where the subscripts on a correspond to the four possibilities in Fig. 15, 
and the expressions have been written down assuming that ~o/V is the 
same for [/rh] and [[m]. Note  that  ~,  + ~b is equal to ac + ad. It turns out 
that  the min imum surface tension is rr, near the upper right end of the 
first-order line in Fig. 12a, r~ b near the lower left end of this line, and near 
the center of the line either ac or cr d is the smallest. 

Ca) (b) Cc) (d) 

Fig. 15. Graphs illustrating different types of interface pairs which are possible when [/rh] 
coexists with [[m]. The edges used in producing the interfaces are shown in dashed lines. 
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6. EFFECT OF HIGHER-ORDER INTERACTIONS ON 
SUPERDEGENERATE LINES 

The phase diagrams obtained in the three-interface approximation in 
Section 5 will be further modified at superdegenerate points and lines due 
to the effects of higher-order interactions. We begin with the lines, and 
consider, in particular, a superdegenerate line where [lm] and [[m] come 
together. The configurations of interest can then be represented as strings 
of alternating l's and m's, with some of the l's (but none of the m's) 
carrying a bar. It is convenient to analyze this situation by regarding the 
['s as "defects" in an underlying "defect-free" [lm] phase. A configuration 
can then be specified by a set of numbers {Lk}, where L k is the distance 
(in lattice planes) between defect k and defect k + 1. It is clear that each Lk 
must be of the form 

L = L* + PQ (6.1) 

where the quantities 

L * = [ + m ,  Q = l + m  (6.2) 

play the same role as l* and Q~ in (2.1), and P~>0 is some integer. The 
total number of planes N is the sum of the L's. 

For a configuration containing N planes, we define the defect energy 
to be 

HD = H - -  Nfo (6.3) 

where fo is the free energy per plane of [Im]. We then suppose, following 
Fisher and Szpilka (17) (though not exactly the same notation), that 

l id  = ~ [ED + W2(Lk) + W3(Lk, Lk + 1) + " "] (6.4) 
k 

where ED is the (free) energy to create a defect, and W2, W3, etc., are inter- 
action energies for pairs of defects, triples, etc. 

To obtain ED, imagine that a single l in [lml is changed to /. Then 
the number of planes changes by A N =  [ - l ,  and the free energy by 

A H  = ( [ -  l) e~ + q~( [) - O~( l) + ~b~(rn, [) - ~b~(m, l) 

+ 0~([, m) -O~( l ,  m ) +  ... (6.5) 

Consequently, in view of (6.3), 

E o = A H  D = A H -  ( { -  l) fo (6.6) 
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where 
(l + m )  fo  = 2a + lea + m ~  + q~(l) + O~(m) + . . .  (6.7) 

Reconnection formulas of the sort discussed in conjunction with (2.7) 
and (2.8) may be used to express the W's in the form 

W =  H (') + H ( ~ ) -  H ( c ) -  H <al (6.8) 

for appropriately chosen configurations (a), (b), (c), and (d). For  W2(L*), 
the appropriate choice is shown in Fig. 16, and the right side of (6.8) can 
be evaluated in the following way. In any vertical column in this figure 
which is one letter wide, the same letters occur in (a) and (b) as in (c) and 
(d). Thus, the e~ and e~ terms in (2.9), as well as the ~b's with a single argu- 
ment (pair interactions), cancel out in the difference (6.8). The same obser- 
vation holds for any vertical column two letters wide, and, indeed, for any 
column of consecutive letters which does not include those between the 
pair of dashed lines in Fig. 16. Consequently, under the assumption that 
the r become rapidly smaller as the number of interfaces increase, the 
dominant contribution to W2(L*) is the double difference associated with 
the column between the dashed lines, 

Wz(L* ) "- A z~( fm{)  = (~(lml) + (~([m[) - (~(lm[) - qb(fml) (6.9) 

In this expression we have used the simplified notation introduced 
following (2.11), in which the commas separating the arguments of ~b are 
omitted, and also the subscript, which in (6.9) could be ~. The general 
definition of a double difference A2~b(S), where S is a string of letters, some 
of which carry bars, is as follows. Let c and d stand for the first and last 
letters of S, including the bars if present. Let c' be the corresponding letter 
without a bar if c carries a bar, or with a bar if c does not have a bar. 
Thus, if c = l, then c' =/-; if c = fit, then c' = m. Define d'  in the same way. 
Then writing S in the form cTd, we define 

A2~(cTd)  = O(cTd)  + ~ ( c ' T d ' )  - ~ (c 'Td )  - ~ ( c T d ' )  (6.10) 

Note that (5.3) and (5.4), as well as (6.9), are consistent with this notation. 

Ca)  I rn l 

Cb) t r o t  

( c )  Z m ! 

Cd) I m I 

m ~'m l 

m l r n !  

m l ' m !  

m l m l  

m l m l  

m l m l  

m l m l  

m l m l  

Fig. 16. Figure illustrating the reconnection formula (6.8) for W2(L*). 
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The same reconnection argument can be used for the other W's. For 
example, one finds 

W3(L*, L* + Q) ~ A20(fmfmlm[) (6.11) 

and in general the dominant contributions to Wn+I(L~, L2,..., Ln) are of 
the form A2(~(S), where the string S is obtained from a configuration con- 
taining n + 1 {'s (defects) separated by distances specified by L1, L2,..., Ln. 
(If this approximation is not sufficient, one can write down an exact 
expression for W as an infinite sum; see Appendix C.) 

Once the W's are known, the phase diagram can be computed 
following the procedure of Fisher and Szpilka: first take into account pair 
interactions W2 while ignoring W3, W4, etc., and then see how the 
resulting phase diagram is modified by higher-order terms. The analysis for 
pair interactions is basically the same as in Section 4 above. One considers 
lower tangent lines to the graph of Wz(L), with L taking the values 
allowed by (6.1). If, for example, W2 satisfies the convexity condition 

W2(L + Q) + W2(L - Q) - 2 Wz(L) > 0 (6.12) 

for all L > L*, the result, in the defect pair approximation, is an infinite set 
of periodic phases 

[ [m ], [ {mlm ], [ [mlmlm ],... 

separated by superdegenerate lines. If, on the other hand, W2 has a unique 
negative minimum at L = L ~ there is a first-order transition between this 
phase and Jim]. In particular, if the minimum occurs at L ~ = L*, as one 
would expect if (6.9) were negative, the transition from [lm] to [[in] is 
first order, so that the higher-order interactions have transformed the 
original supergenerate line into a first-order transition. 

If in the approximation which uses only W2 a certain number of super- 
degenerate transitions remain, the effects of the remaining interactions can 
be evaluated using the following "renormalization" approach. Suppose a 
superdegenerate transition separates phases corresponding to L and 
/S, = L + Q. Then the configurations of interest will be of the form L L L L  .... 
etc., where L and /~ are associated with appropriate sequences of l's, ['s, 
and m's. We may consider [L]  . . . .  LLL... as a reference state, and the L's 
as constituting a new kind of defect. The distances {Lk} between the new 
defects are of the form 

L = L *  + P Q  (6.13) 

where 
L * = L ,  Q = L  (6.14) 
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and P is any nonnegative integer. In analogy with (6.3) and (6.4), we 
introduce 

Hz~ = H - NiL (6.15 ) 

where f z  is the free energy per plane for the phase [L] ,  and write 

/~D=E [ED-~- ~r2(~/~k) -~ l/V3(~-~k, Lk+l)-~- ""] (6.16) 
k 

The l~'s and L'D can be computed directly in terms of the quantities in 
(2.9), or expressed in terms of the W's and Ez~. Formulas of the latter type 
are given in Appendix D. 

Of course one cannot make definite statements about the ultimate 
phase diagram resulting from taking all the interactions into account 
without having some reasonably explicit functional form for the ~b's. We 
shall discuss one such from in Section 8 below. The methods of this section 
also apply at a superdegenerate line separating [lm] and [/rh], with an 
obvious change in notation. But in addition, the same strategy works in 
more complex cases, such as the line separating [lm] and [lm[rh] in 
Fig. 12d. One must, however, remember that the analysis is only valid 
when the configurations which need to be taken into account are precisely 
those which are allowed on the original superdegenerate line. This is no 
longer the case near a point where one superdegenerate line meets another. 
We consider one such point in the next section. 

7. EFFECT OF H IGHER-ORDER INTERACTIONS AT A 
SUPERDEGENERATE POINT 

The points at the ends of the first-order (dashed) lines in Figs. 12a 
and 12b bear a certain resemblance to Fig. 5, the phase diagram obtained 
by ignoring interface interactions. This observation provides the key to 
analyzing the effects of higher-order interactions on the phase diagram near 
one of these points. 

To be specific, we shall analyze the point in Fig. 12a where the phases 
[lm], [lrh], and [{m] come together. The corresponding ground state 
graph in the three-interface approximation of Section 5 is the one shown in 
Fig. l lg, and we shall assume that only configurations corresponding to 
walks on this graph need be considered. Such configurations can be 
represented in an obvious way as strings of alternating m's and l's, with 
bars on some of the letters. However, no two letters adjacent to one 
another can both carry a bar. Consequently, any allowed configuration can 
be regarded as an admixture of the two phases 

~= [[m], #= [/~] (7.i) 
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associated with the left and right vertical loops of Fig. l lg, with an inter- 
face arising whenever the walk utilizes one of the horizontal edges in this 
figure, that is, whenever a letter without a bar is followed by another letter 
with no bar. 

Thus, the possible lengths 7 and rh (in planes, not letters) of segments 
of phases ~ and ~ have the form 

7-= 7"* +/~0~ (7.2) 

rh = rh* + q0~ (7.3) 

in analogy with (2.1) and (2.2), where 

7"* = m, O~ = [+  m 

rh* = l, O ~ = l + r h  
(7.4) 

and /~ and ~ are nonnegative integers. Note that the shortest possible 
segment of ~ consists of m successive planes of phase fl, while the shortest 
segment of ]~ contains l planes of ~. An allowed configuration is specified 
by the sequence {Tk, rhk} giving the lengths of successive segments of 
and fl, and the total number of planes is 

N =  ~ (Tk+r~k) (7.5) 
k = l  

in analogy with (2.11), where 2,7 is the number of interfaces between 
and ~. 

The free energy (2.9) of an allowed configuration can be written in the 
form 

/ t =  ~ (26 + 7kg~ + rhkg~) + ~ (7.6) 
k 

with 

k 

(7.7) 

the analogy of (2.10). But note that while H =  H, ~ is not equal to ~b! In 
analogy with (2.13), we define 

= e~ - ~ (7 .8 )  

By equating ~ and H, the various quantities in (7.6) and (7.7) can be 
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related to those in (2.9) and (2.10). Thus, g~ and ~ are the free energies per 
plane of the "pure" phases ~ and ]~, and hence given by the formulas 

where 

(7.9) 

( l+  fit) g~ = 2r + le~ + fite~ + r (7.10) 

~ = ~ ( [ )  + ~b/~(m) + ~b~({, m) + ~b~(rn, [) + ..- (7.11) 

is the contribution of ~b to the free energy of [+  m planes of phase ~, and 

~ = r + ~be(fit ) + ~b~(l, fit) + ~b~(fit, l) + ... (7.12) 

is its counterpart for phase ~. Taking the difference yields 

g = 2 ( l - [ - m + f i t ) a + ( [ f i t - l m ) ~  ~ ~,~ 
-t- - -  ( 7 . 1 3 )  

(l+fit)([+m) [+m /+fit 

The ~'s can be evaluated using reconnection formulas as discussed in 
Section 2, in connection with (2.7) and (2.8), and employed in Section 6 to 
obtain the "defect" interactions. The standard form is 

~;= H (') + H (b) - H (c)- H (d) (7.14) 

for appropriately chosen configurations (a), (b), (c), and (d). The choice 
for ~(rh*)  is shown in Fig. 17, where a thin underline indicates ~, a heavy 
underline ~, and colons have been inserted at the interfaces. The analysis 
is then parallel to that used in connection with (6.8) and Fig. 16. In any 
vertical column one or two letters wide in Fig. 17 the same letters or pairs 
of letters occur in (c) and (d) as in (a) and (b), so the corresponding 
terms--e~, e~, O's involving two or three interfaces--cancel out in the dif- 

(a) 

(b) 

(c) 

(d) 

- '  " ' - (  m "( m m -(m t lrn:l m~ 
I I 
I _  _1  

[ ff~ llm I r o l l  I~ I ffa 
I ! 

mTm[' IZ-' ml ,m l ~  l ~n 
I I 
I I 

r~ i 6~ 1,6~ / : m , l  m l m 
1 

Fig. 17. Figure illustrating the reconnective formula (7.14) for ~r 
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ference (7.14). Indeed, only columns of consecutive letters which include 
those between the dashed lines make a nonzero contribution, from which 
it follows that the dominant contribution is 

~(rh*) ~- A20(mlm) (7.t5) 

using the notation introduced in (6.10). 
This result is easily generalized to larger values of rh, or to ~e or ~ 

with several arguments, with the following result. Any ~ with a specific set 
of arguments corresponds to a set of segments of ~ and ~ separated by 
interfaces. Let S be the string of letters consisting of l's and m's, with or 
without bars, extending from the first to the last of these interfaces, and in 
addition including the letter which precedes the first interface and the letter 
following the last interface, in the configuration which contains precisely 
this set of interfaces and no others. Then, to lowest order, 

~ d2~b(S) (7.16) 

For example, in the case of ~(rh*),  S is mlm; for ~(rh* + ~ ) ,  S is mlrhlm; 
for ~(7" ,  rh*), S is lmlm. In place of the approximation (7.16), ~ can be 
expressed as an infinite sum: see Appendix C. 

The term ~ in (7.6) can be obtained in the manner suggested by 
Fig. lb and Eq. (2.4), by inserting a segment of ~ into a pure ~ phase. The 
shortest such segment, of length rh*= l, is produced by removing a bar 
from a s ingle/ in an ~ configuration, with a resulting free energy change of 

~ H  = ( / -  [ )  ~ + ~ ( / )  - ~ ( [ )  

+ ~b~(m, l) - ~b~(m, [) + q~(l, m) - ~b~({, m) + ... (7.17) 

which [see (7.6) and (7.7)] is equal to 

A[I= 2ff + lgp - [g~ + ~p(rh*) (7.18) 

the counterpart of (2.4). As g~, g~, and ~(rk*)  have been computed 
previously, equating (7.17) and (7.18) yields the expression 

2~ - 2(/-r~ - l m ) a  + [ l{(r~ - m )  - m r S ( [ - / ) ]  e 

([+ m)(l + r~ ) 

+ --~9~+~-I@~+A~ (7.19) 

where @~ and @/3 are defined in (7.11) and (7.12), and 

A~ = -~b~([) - ~b/~(rh) + q~(l, m) + ~bB(m , l) 

-- ~b~(l, m) - ~b~(rh, l) - ~b~(/, m) - ~b~(m, [) + ... (7.20) 
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See Appendix C for the general expression. One can show that ff is the 
same as aa in (5.6) up to three-interface terms provided e and a in (7.19) 
are chosen so that the phases ~ and ~ coexist. Note that (5.6) defines a 
surface tension only on the coexistence line, whereas (7.19) does not have 
this restriction. 

The analysis of the phase diagram near the [lm] : [/rh] : [[m] point in 
Fig. 12a can now proceed using the methods of Sections 4 and 5, with the 
interactions ~ for the new interfaces replacing ~b. The ~'s with a single 
argument, the new pair interactions, can lead to a splitting of the super- 
degenerate lines to produce periodic phases which can be regarded as 
mixtures of ~ and ]~, such as [lm{m], [lmlrhlrh], etc. Of course, not all of 
these phases need occur. Those which arise will be determined by the con- 
vexity (or lack thereof) of the functions ~(~r) and ~(r~),  in accordance 
with the geometrical arguments of Section 4. If new superdegenerate lines 
arise, the splitups of the four-phase points where they cross will be deter- 
mined by the double differences of the ~'s with two arguments, as in 
Section 5. 

Once any feature in the phase diagram has been located in the & g 
plane, it can be mapped back to the a, e plane by solving (7.13) and (7.19) 
for ~ and e in terms of ff and g. Note that these equations are linear in a 
and e, with coefficients which depend on l and m, that is to say, on the 
particular three-phase point which is being studied. 

Precisely the same analysis can be carried out at the other points in 
Figs. 12a and 12b where a first-order line meets two superdegenerate lines. 
It is, of course, tedious to rederive the formulas for the different cases, so 
we list in Table I a set of equivalences which allows one to transform those 
for the case discussed above, corresponding to the first line of the table, 
to the corresponding formulas for the other cases. Line 1 of the table 
corresponds to the case we have discussed, with ,y the phase between the 
superdegenerate lines in Fig. 12. If one is, for example, interested in the 
point where [/r~], [lm], and [[m] come together, in Fig. 12b, then line 2 
of the table shows which phase should be identified as ~ and which as ]~. 

Table I. Equivalences for Transforming Formulas for 
Renormalized Quantit ies 

3, [~ ]  [~ ]  [~ ]  f l m m e~ e~ e 
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Then equations (7.4), (7.9), (7.10), (7.13), and (7.19) remain valid provided 
the quantities carrying tildes are left unchanged, while each l is replaced by 
m, [ by rh, m by ~ and n~ by l, and the same replacement is carried out in 
(7.11), (7.12), and (7.20), the formulas for ~b~, ~ ,  and A~. In addition, the 
subscripts on the ~b's must be altered appropriately; thus, for example, 
~b~(~ m) in (7.11) is replaced by ~b~(rh,/). Finally, e~ becomes e~ and vice 
versa, and hence ~ is to be replaced by -e .  The same substitution rule 
works for the ~'s. Thus, ~e(rh*) is 32(~([m[) to lowest order, and ~(7",  rh*) 
is A2(~(m{m[) which, note, is -32~(m[ml) according to the definition 
adopted in Section 6. 

8. PHASE D I A G R A M S  FOR EXPONENTIAL INTERACTIONS 

Sasaki (18) has shown that in the case of a Frenkel-Kontorova model, 
under fairly general assumptions, the interface interactions ~b~ and ~bp have 
the following form if the interactions are sufficiently far apart. In the case 
of pairs of interfaces, 

(~(1) = C~AP~, CJB(m) = CpA~ (8.1) 

where p and q are related to l and m through (2.1) and (2.2), and C~, A~, 
Ca, and A s are real constants, with of course 

IA=I < 1, IAal < 1 (8.2) 

Higher-order interactions are given by a factorization rule: 

~b~(l, m) = q~(l) ~ba(m) t,p 

~ba(m, l) = ~ba(m) ~b~(l) t~  
(8.3) 

and, in general, 

~b~(/1, ml, 12,...) = ~b~(ll) ~b~(ml) (J~(lz)...t~t~..- 

q~#(ml, 12, m2,...)= ~#(ml) q~(12) Oa(m2)...ta~t~... 
(8.4) 

where a factor of t~  appears for every pair of successive arguments in 
which an m follows an l, and t~  when an l follows an m. Thus, there is one 
less t than there are arguments of ~b. Alternatively, one can say that there 
is a t~  for every e-to-/~ and a tp~ in every/%to-e interface whose interaction 
is represented by ~b, except for the first and the last interface. 

In the case of a Frenkel-Kontorova model these formulas are only 
approximate; they become asymptotically exact (with exponentially small 
corrections) as the p's and q's become large. One can, of course, simply 



Interface Interactions in Modulated Phases 77 

regard (8.1)-(8.4) as defining a "model" set of interactions which shall, for 
brevity, be referred to as exponential interactions. 

The set of exponential interactions is determined by six real 
parameters: Ca, C s, As, A s, tas, ts~. However, the qualitative features of 
the phase diagram are determined by the signs of these quantities. In par- 
ticular, the convexity condition (4.8) for ~b~ is satisfied for all l > l *  if and 
only if C~ and A~ are both positive. If Ca is negative, qS~ has a unique 
negative minimum at l * =  l*, and if C~ is positive but A~ is negative, the 
unique negative minimum is at I ~ = l* + Q~. Analogous comments apply to 
qSs, Cs, and A s. Therefore, case A of Section 4 arises when Ca, A~, Cs, and 
A s are all positive, case B when either Ca and Am are positive, or C s 
and A s are positive, but not all four are positive, and case C in all other 
instances. 

Let us restrict our attention to what happens in the immediate vicinity 
of the point U on the phase diagram where the first-order line separating 
phases c~ and fl comes to an end and the multiphase region begins. Case C 
is then relatively uninteresting, as already in the pair interaction 
approximation U is a triple point with a first-order coexistence of three 
phases, Fig. 10, and this situation will not be altered by (weak) higher- 
order interactions. 

Case B is more interesting, since in the ,pair approximation, Fig. 9, U 
is an accumulation point of "superdegenerate endpoints" where super- 
degenerate lines meet the first-order fl-to-mixed transition, assuming that 
Ca and A~ are positive. The effect of higher-order interactions on one 
of these superdegenerate lines can then be worked out by the method 
discussed in Section 6, setting m = m ~ (the minimum of ~bs) in the formulas 
for W. One can show that in this case W has the "exponential" form 

mn + I(L1, L2 . . . . .  Ln) = Dlz n -  XA?' + e: + + P" (8.5) 

where P: is related to Lj  through (6.1), and 

- -  P q A - C~A~ CsA/3tast~ (8.6) 

# = A ~ A  (8.7) 

D = C ~ A P A  (8.8) 

to lowest order. Note that p can be any nonnegative integer, but q is either 
0 or 1, depending on whether m ~  * or m ~ = m * +  Qs; the latter occurs 
in the case C s > 0, As < 0. 

There are now two distinct possibilities, depending on the sign of 

q C~Ae t~ t s~  (8.9) 
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If this quantity is negative, then A and D are negative, and we need only 
consider the pair approximation W2(L) to see that the superdegenerate line 
becomes a first-order transition. As this happens for every superdegenerate 
line, whatever the value of p, we conclude that the c~-to-mixed boundary 
becomes a quasicontinuous transition, by which we mean an accumulation 
of an infinite number of first-order transitions which become smaller and 
smaller upon approaching the e phase (what Fisher and Szpilka (~7) call a 
"devil's last step"). Consequently, U is a quasicontinuous endpoint: the 
point where the phenomenon just described terminates on a first-order line. 

The other possibility is that (8.9) is positive. In that case D, A, and # 
are all positive, and W2 satisfies the convexity condition (6.12), so that the 
superdegenerate line in question is split into an infinity of superdegenerate 
lines in the defect pair approximation (using W2). At one of these lines, 
characterized by L corresponding to P and /] to P +  1, it is possible to 
compute the renormalized interactions in (6.16). These turn out to have the 
same exponential form (8.5) with a new set of parameters, obtained using 
the formulas of Appendix D: 

= D # A  2p (8.10) 

/ ] = # A  e (8.11) 

~ = # A  e + l (8.12) 

to lowest order. But since D, A, and # are positive, the same is true of/3, 
.~, and /~. Furthermore, this property will hold for all subsequent renor- 
malizations. Hence, we conclude that as higher and higher-order inter- 
actions are considered, the superdegenerate lines will continue to subdivide 
on a finer and finer scale, resulting in a singular continuous transition in 
which phases of arbitrarily large periodicity appear in the phase diagram, 
together with nonperiodic phases obtained as limits. Such a structure is 
commonly called a "devil's staircase," and is typical of a "commensurate 
incommensurate" transition. In this case U is the endpoint where the 
boundary of this singular-continuous (or devil's staircase, etc.) structure at 
the ~ phase meets a first-order transition. 

In case A, C~, A n, C~, and A~ are all positive, but t~  and t~  can be 
of either sign. We begin by analyzing the effects of higher-order interactions 
on the superdegenerate lines, Fig. 8, which arise in the pair approximation. 
Away from the four-phase points where they intersect, the analysis in 
Section6 can be used, and formulas (8.5)-(8.8), together with their 
counterparts when ~ and/3 are interchanged, are applicable. It follows from 
the preceding discussion of case B that the superdegenerate lines either 
become first order, if t~t~tan is negative, or broaden into singular-continuous 
(devil's staircase) transitions if t ~ t ~  is positive. 
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Near the four-phase points of the pair approximation, the analysis of 
Section 5 can be applied. Inserting (8.3) into (5.3) and (5.4) yields the 
formulas 

A2(9~(lm) = t~B[~(l ) -  ~b~([)] [~b~(m)- Oa(rh)] (8.13) 

A2~B(ml) = t~  [~b~(/) - ~b~([)] [~b/~(m) - ~b~(rh) ] (8.14) 

Since / is  larger than I and rh larger than m, (5.1), A2~b~ has the same sign 
as t~ ,  and Azq~/~ the sign of t~.  Consequently, the four cases shown in 
Fig. 12 correspond to: (a) t ~ > 0 ,  t ~ > 0 ;  (b) t~a<0, t ~ < 0 ;  (c) t ~ > 0 ,  
t ~ < 0 ;  (d) t ~ < 0 ,  t ~ > 0 .  

When t~at~ is negative, one can show that higher-order interactions 
transform the superdegenerate lines surrounding the inner parallelograms 
in Figs. 12c and 12d into first-order transitions, which therefore join the 
first-order lines parallel to the t/~ and q~ axes at ordinary triple points. 
Consequently, the mixed-phase region is filled with a fairly complicated 
array of first-order lines and triple points, and the point U is a "quasi- 
continuous" accumulation point of an infinite set of such transitions. 

When t~e tB~ is positive, the analysis of Section 7 can be applied to the 
three-phase points in Figs. 12a and 12b. First consider the case (a), t~  > 0, 
t ~ > 0 ,  and in particular the point where [[m], [lrh], and [lm] come 
together. The approximation (7.16) applied to the exponential interactions 
(8.1)-(8.4) yields renormatized interactions ~ with the same functional 
form, but a new set of constants given by the formulas 

.d~ = C~AP~ CaAq~t~/3t/3~ (8.15) 

71~ = C~AP C~A~t~t~ (8.16) 

C~ = [ C~( A ~ -  A~P)] 2 C~Aqpt~t~ (8.17) 

C~ = C~AP[Ca(Aq~-a~)] 2 t~pta~ (8.18) 

7~= [ta~C~(AP- A~) CB(AqB- A~) ] 1 (8.19) 

~ = p ~ C~(Aq Aq)] 1 (8.20) [t~C~(A~ --As) 

where p and/~ are associated with I and ~ respectively, through (2.1), and 
q and ~ with m and rh through (2.2). Replacing p by/~,/~ by p, q by ~, and 

by q on the right side of each of these formulas makes them applicable 
at the other three-phase point in Fig. 12a, where [/rh], [{m], and [/rh] 
come together. 

As the C's, A's, and t's are all positive, and since /~ is greater than p 
and ~ greater than q, formulas (8.15) (8.20) tell us that the C's, .,]'s, and 
?'s are also positive. This same property will obviously be preserved under 

822/62/1-2-6 
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further renormalizations. Consequently, each of the three-phase points 
in Fig. 14 will, under the effects of further perturbations, turn into a 
microscopic version of U, with a complex set of singular-continuous 
transitions, but also another infinite set of (much smaller) first-order lines 
in its vicinity, and with each end of each of these lines there is associated 
a similar structure, and so on ad infinitum. Thus, the phase diagram has 
a self-similar or "fractal" stucture. In this case we shall refer to U as an 
upsilon point, since the first-order line and outer boundaries of the mixed- 
phase region, Fig. 14, resemble the letter ]c lying on its side. Evidently, an 
upsilon point is a point of accumulation of (other) upsilon points. 

Finally, consider the case t~  < 0, t~  < 0, and in particular the point 
where [/r~], [lm], and [[in] come together in Fig. 12b. Making 
appropriate substitutions, as indicated in line 2 of Table I, in the formulas 
of Section 7 yields a set of renormalized interactions ~ described by the 
constants given by the formulas 

= C~A~ C~A~ t~p t~ (8.21) 

P q 71~ = C~A~ C~ABt~t~ (8.22) 

~ 6 q (8.23) = C~A~ [C~(A~ - A~)] 2 t ~ t ~  

C~ = [ C~(A p -  A~)] z C~Aqat~t~ (8.24) 

7~ = - [  t=~C~(A p -  A~) Ca(Aq a -  A~)] - -1  (8.25) 

7~= - [ t ~ C ~ ( A P - A ~ )  Cp(Aq~-A~-A~)] -~ (8.26) 

with the same association of p with l, /~ with ~ q with m, and q with rh 
noted earlier. Replacing p with t5, t5 with p, q with q, and ~ with q in these 
formulas makes them applicable at the three-phase point [lm], [/rh], and 
[lift] in Fig. 12b. 

While (8.21 )-(8.26 ) resemble (8.15 )-(8.20 ), one crucial difference is the 
minus sign on the right side of (8.25) and (8.26). This means that since t,p 
and t~  are negative, t~  and tr wdl be posmve, along with the C s and A s. 
This has the following consequence for the phase diagram. In the vicinity 
of the point U there are an infinite number of first-order transitions which 
are (roughly) i~erpendicular to the main first-order line separating phases 

and ft. At each end of each of these first-order lines one finds an upsilon 
point as previously defined (with the t's positive): in its vicinity there will 
be an infinite number of first-order transitions which are (roughly) parallel 
to the first-order line terminating on the upsilon point, and thus again 
(roughly) perpendicular to the ~fl transition line. Perhaps U should be 
called an "inverse" upsilon point to distinguish it from the "normal" 
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upsilon point previously defined. In any case, U is an accumulation point 
of (normal) upsilon points. 

9. C O N C L U S I O N  

We have shown that model of interacting interfaces introduced in Sec- 
tion 2 can be analyzed in considerable detail, using the strategy employed 
earlier by Fisher and Szpilka ~17) for defects, assuming that the interaction 
decreases rapidly with the number of interfaces and with the distance 
between interfaces. The qualitative features of the resulting phase diagram 
depend in a crucial way on the convexity, or lack thereof, of the pair inter- 
actions, (4.8) and (4.9), and on the signs of certain double differences, as 
defined in (5.3), (5.4), and (6.10), involving higher-order interactions. 

Whereas we have not attempted to work out the most general case 
involving arbitrary sets of interface interactions, we have shown in Sec- 
tions 6 and 7 how certain cases can, at least in principle, be attacked by 
iterative methods using sets of defects, or "renormalized" defects, and 
"renormalized" interfaces. In particular, for interactions of the exponential 
form defined in Section 8 it is possible to classify the different phase 
diagrams which occur close to the ~ - - 0 e n d  of the first-order transition 
separating the ~ and/~ phases. There are for these interactions a relatively 
small number of possibilities: a simple triple point, singular-continuous and 
quasicontinuous endpoints, and, in case A in the notation of Section 4, 
either a complex web of first-order transitions (with an infinite number of 
triple points) or an upsilon point, "regular" or "inverse." An upsilon point 
turns out to be an accumulation point of other upsilon points connected 
through a web of singular-continuous transitions in a sort of fractal 
structure. 

While the exponential form of interaction may seem to be rather 
restrictive, it applies in a fairly general sense in Frenkel-Kontorova models 
provided the interfaces are widely separated. As this condition is satisfied 
in case A near the end of the first-order ~-/3 transition (as can be seen in 
the pair approximation of Section4), we believe that our description 
should be valid very near an upsilon point in one of these models. One can 
in fact check that the exactly soluble model of Aubry e t  al. (16~ exhibits 
upsilon points in agreement with what we find in Section 8. Numerical 
studies (13'14) of Frenkel-Kontorova models in which harmonics are added 
to the cosine potential are also consistent with the picture of upsilon 
points presented here, though the precision is not very great. In addition, 
numerical studies of Frenkel-Kontorova models with nonconvex inter- 
actions (15'2~23) provide examples of triple points and quasicontinuous 
endpoints as well as upsilon points. We do not know of any examples 
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which could be interpreted as an inverse upsilon point or as accumulations 
of triple points of the type which occurs in case A with t~a t~  < 0, Section 8. 

Our analysis is not limited to Frenkel-Kontorova models, and we 
would expect that similar phenomena would occur in the phase diagrams 
of three-dimensional ANNNI and chiral clock models. Thus far they have 
not (so far as we know) been observed, but that could simply reflect the 
fact that the phase diagrams are not very well understood in the inter- 
mediate temperature regime where the singular-continuous transitions 
occurring just beneath the critical temperature become transformed into 
the first-order structures which can be described (to some extent) by 
low-temperature series. These phenomena should also be accessible in 
experimental systems, though we know of no examples which have been 
observed up to the present time. 

A P P E N D I X  A: M I N I M I Z I N G  (2.14)  

Let H and N be real-valued functions of a set of parameters, collec- 
tively denoted by r, satisfying the following conditions: there are real 
numbers B > 0, C, and D such that 

N(~) >~ B > 0  (A.1) 

H(z) + CN(z) >- D (A.2) 

for all ~. 

Theorem. (a) The quantity 

F =  inf [H(~)/N(~)] 
T 

(A.3) 

is finite. 

(b) The quantity 

f2(f)  = inf [ H ( z ) -  fN(r) ]  (A.4) 

is finite for - o e  < f <  F, and possibly on a longer interval. Where it is 
finite, s is concave and monotone strictly decreasing as a function off .  

(c) If 

O ( f ) = 0  (A.5) 

has a solution, the unique solution is f =  F. If there is no solution, then 
f2(F) is positive, and f2(f)  is - oe for f > F. 
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Before beginning the proof, we note that f = F is always the solution 
of (A.5) in the sense of being the (unique) point where the graph of Q ( f )  
crosses the abscissa, provided that in the case in which Q(F) is positive, the 
graph is extended in an obvious way by dropping a vertical line to - ~  at 
f=F. 

To prove (a), use the fact that (A.1) and (A.2) yield lower bounds of 
- C and - C + D/B for H / N  in the cases D ~> 0 and D < 0, respectively. For 
(b), use (A.1) and (A.3) to show that 

s 0 (A.6) 

Strict monotonicity of f2(f )  is a consequence of (A.1) whenever (2 is finite, 
and (A.6) shows that ~2 is finite for all f~< F. Concavity is a consequence 
of taking the infimum of a collection of affine ("linear") functions. Finally, 
for part (c), note that (A.3) and (A.1) imply that for any e > 0 ,  s e) is 
negative (possibly - ~  ). Thus, either ~ ( F ) =  0, and this zero is unique by 
strict monotonicity, or else Q ( F +  e) is - a z ,  by concavity. 

In applying these theorems to (2.14), the parameters of interest are the 
l i and the mi; note that i takes on a finite number of values. Condition 
(A.2) is not hard to check, assuming a reasonable behavior of the ~b's. Note 
that H itself will not be bounded below if e~ or e~ is negative. 

A P P E N D I X  B: L O C A T I O N  OF P O I N T S  IN T H E  P H A S E  
D I A G R A M  IN THE  T H R E E - I N T E R F A C E  
A P P R O X I M A T I O N  

The locations of various points in the phase diagrams in Fig. 12 are 
given in Table II, using the variables 

a = ( [ -  1) r/~ + r - r 

b = (rh - m) r//~ + ~b~(rh) - ~b~(m) 

which are shifted and rescaled versions of q, and 
special values 

a + = ~b~(l, m) + ~b~(m, l) - ~b~(~ m) - ~be(rn , [) 

a -  = ~b~(l, rh) + ~bB(rh , I) - ~b~(/, rh) - ~b~(rh, [) 

b + = ~b~(/, m)+()~(m,  l ) - ~ ( l ,  th ) -q~(rh ,  l) 

b = ()~(~ m) + (~B(m, [) - ()~(~ rh) - ~(rh,  [) 

(B.1) 

(B.2) 

q~, respectively. The 

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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Table II. Location of Points in the  Phase D iagrams in Fig. 12 

Poin t  a b 

Urn] : [[m] :E/n] a + b + 

E/n1: rfm] : E/n] a -  b 
E[rn] : Elm] : E/n] a + b 
Eln] : [lm] : [ /n] a b + 

[lnfm] : Elm] : [[m] a* b + _ ~ 2 ~  

[ln[m] : [ln] : [[n] a -  b + - A2fb~ 

[in[m] :E/m] : [tm] a + - A2~b~ b" 
[lnfm] : [[in] : E/n] a + --A2q~, b 
[lm[n] : [lm] : [[m] a + b + - A 2 ~  

[lmfn] : E/n] : E/n] a -  b + - A2~bt~ 
[lm[n] :[lm] : I /n] a + - A2~b~ b + 
[lmfn] : []-m] : [/rrT] a + -A2~br b 

give the locat ions  of the upper  (a+) ,  lower ( a - ) ,  r ight (b+) ,  and  left ( b - )  
vert ical  and  hor izonta l  solid lines of superdegenera te  points.  No te  that  

a + - a -  = b  + - b  =AZ~b~+A2q~ (B.7) 

where A2~b~ and A2~b~ are abbrev ia t ions  for A2q}~([m) and A2q~p(ml) defined 
in (5.3) and  (5.4). A three-phase  poin t  is identified in the table by specifying 
the three phases which come together  at the point ;  thus [-lrh] : [ l m ] :  [/rh] 
is the poin t  at the lower right end of the f i rs t -order  (dashed)  line in 
Fig. 12b. The cor responding  points  in the e, e plane are ob ta ined  using 
(5.5) and  e = r/~ - r/~. 

A P P E N D I X C .  CLOSED-FORM EXPRESSIONS FOR 
VARIOUS QUANTIT IES USED IN 
SECTIONS 6 A N D  7 AS S U M S  OF ~ 'S 

We use the abbrev ia ted  no ta t ion  for the ~b's in t roduced  after (2.11): 
subscripts  are omit ted,  and  the a rgument  of each ~b is a string of letters. If 
S and T are two such strings, S T  is the combined  string in which the letters 
of T follow those of & and SI  and S I T ,  etc., have an obvious  significance. 
An a l l o w e d  string is one in which l 's and m's (possibly with bars )  al ternate.  
In order  to be able to write sums such as (C.1) in a r easonab ly  compac t  
nota t ion ,  it is convenient  to adop t  the convent ion  that  ~b(S) vanishes if S 
is the nul l  s t r ing  with no letters, and  O ( S T )  vanishes if S T  is not  an al lowed 
string, as is the case, for example,  when S ends and T begins with an m. 
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We can then write (6.5) and (6.7) in the form 

AH=([-I)e~+~ ~ {(~(C{C')-(~(CIC')} (C.1) 
C, C' =[lrn] 

(l+m)fo=2a+le~+me~+ ~ O(C) (C.2) 
C =  [lm] 

where the sum over Cc [Im] includes the null string, and each distinct 
finite string of successive letters occurring in the infinite configuration 
...lmlm..., precisely once. While the null string can be omitted in (C.2), as 
the corresponding ~b vanishes, it is essential in (C.1). 

To obtain W(L~, L2,... , L,) in closed form, first construct the corre- 
sponding string S; see (6.11) and the remarks which follow. This S, which 
we also denote by So, begins and ends with an 1. Changing the final [ to 
l, the first/-to l, or both yields the strings So, Sd, and Sb, respectively. That 
is, Sa, Sb, So, and Sd represent the central portions of the corresponding 
configurations (between the dashed lines in Fig. 16) used in the reconnec- 
tion formula. Consequently, the exact formula for W is 

W(L~,L2,...,L,)=~ ~. {O(CSaC') 
C, C' c [Im] 

+ ~(CSbC')--~(CScC')--~(CSdC')} (C.3) 

The approximation using a double difference, as in (6.9) and (6.11), comes 
from retaining only the single term in which C and C' are both null strings. 
(Formulas giving ffZ's in terms of W's are given in Appendix D.) 

Formulas (7.11) and (7.12) take the form 

~ =  Z ~b(A) (C.4) 
A = Urn] 

~'e = Z 0(B) (c.5) 
1t= [lm ] 

in the notation introduced above. To obtain a formula for some 3, first 
construct the string T consisting of l's and m's (with or without bars) 
obtained by putting together the segments of the phases ~ and ~ specified 
by the arguments of ~ in the appropriate order. That is, T is the string 
obtained by removing the first and last letters of S in (7.16). The re'connec- 
tion procedure then yields the formula 

k A ,  4 '  = U r n ]  B, n '  = [ t r~]  

-- Z Z [(~(ATB) + O(BTA)]~ (C.6) 
A = [/-m] B =  [lm] ) 
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where the plus sign is employed if ~ has an odd number of arguments, as 
in (7.15), corresponding to the interaction of an even number of ~ inter- 
faces, and the minus sign if ~ has an even number of arguments. 

To obtain an expression for A~, (7.20), in closed form, first write 
(7.17) as 

A H = ( l - [ ) e ~ + ~  ~ {O(AIA')--r (C.7) 
A, A '  c [ lm] 

Next equate this with (7.18), use (C.6) with T = l  to provide an explicit 
expression for ~(rh*) ,  and use (7.10) to write the result as 

25 = [g~ + r~g~ - 2a - [% - rhe~ + Ao (C.8) 

with 

A~= -- ~ ~b(B)+ 2 2 ]-q~(A/B)+(~(BIA)] 
B =  E/m] A = Jim] B =  [lr~] 

- 2  ~, (~(A[A')-~, Z (~(BIB') 
A, A ' ~ [ [ m ]  B, B ' ~ [ l r h ]  

(c.9) 

One can show that (C.8) is equivalent to (7.19), and (C.9) can be rewritten 
in the more compact and symmetrical form 

Ao= ~ 2 [O(AmlB)+O(BlmA)] 
A =  [fm] B =  [trn] 

- 2  Z ~(A[A')-2 Z ~(BrhB') 
A, A '  = [[m] B, B'  = [ lmJ 

(C.lO) 

A P P E N D I X  D: E X P R E S S I O N S  FOR ED A N D  V[/k, 
Sect ion  6 

Combining (6.3) and (6.15) yields the formula 

FID= HD-- N(fL-- fo ) (D.1) 

In the state [L]  there are no L-type defects, so /4D = 0, and thus, using 
(6.4), one obtains the expression 

L(fL -- fo) = ED + W(L) + W(LL) + W(LLL) + ... 

=Eo+ ~, W(F) (D.2) 
F= ILl 
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in a notation in which subscripts have been dropped from the W's and 
commas have been omitted from their arguments, just as in the case of the 
~b's in Appendix C. 

To obtain ED, note that it is the change in/~D if a single L in [L]  is 
changed to an/5, thereby changing N by A N  = E -  L, and HD by 

AHD = W ( L ) -  W ( L )  + W ( L L )  + W ( L L ) -  2 W ( L L )  + . . .  

=Z Z {w(rs w(rcr'l} (D.3) 
F, F ' ~ [ L ]  

with a notation parallel to that in Appendix C: the sum over F is over 
strings of L's of arbitrary length, starting with zero. Consequently, in view 
of (D.1), 

-(i-L)(/L-Jo)+Y Z {w(rLr')- W(FLF')} (D.4) 
F, F ' =  [L] 

with f L - f o  given by (D.2). 
The I,V's are obtained from the W's using reconnection formulas. A 

given set of arguments L1, L,2 ..... /~n specifies a corresponding string of L's 
and/S's beginning and ending with E, which we denote by S = Sa, while So 
Sa, and Sb are obtained by omitting thefirst ,  the last, and both bars, 
respectively, from S. The formula for l~ is then 

7v=~ y~ (w(rsar')+ w( r sJ ' ) -  w(rscr')- w(rsdr')} (D.5) 
F, F ' = [ L ]  
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NOTE A D D E D  IN P R O O F  

A referee kindly brought to our attention the paper of F. Vallet, 
R. Schilling, and S. Aubry (24) which uses methods similar in spirit to those 
of Fisher and Szpilka ~ to calculate finite temperature properties of one- 
dimensional incommensurate structures. 
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